GXD verses “Direct” XML

Peter Vanderbilt*
March 20, 2000

There is a fair amount of interest in using XML (the eXtensible Markup
Language [3]) for representing data. This note discusses issues regarding the
standard use of XML, what we call direct XML, and discusses how the GXD
dialect of XML addresses them. A very quick introduction to GXD is given
in section 1 below; for more information, see the white paper “Uniform Data
Access Using GXD” [10]. For more on XML, see www.w3.org/XML/#dev.

As we’ll see, GXD puts a layer over XML which, unfortunately, makes the
use of certain standard XML tools more awkward. Thus a second purpose of
this note is to challenge those more knowledgeable about XML and related
technologies to respond with ways to address the issues mentioned here using
just standard XML (or a thinner layer). Are there standards that address some
of these issues? Are later versions of XML likely to address any of these issues?

This note discusses GXD as it is envisioned, not as it is currently imple-
mented (in the NASA-internal release of Jan 00). Not currently implemented
are scripts, templates, association interfaces, interface definitions and interface
versioning.

After the overview of GXD, we define our notion of “direct XML” (in sec-
tion 2). Section 3 discusses issues regarding inheritance and polymorphism,
section 4 discusses multiple inheritance and section 5 discusses schema, evolu-
tion. We then turns to GXD’s support for “indirections” (in section 6).

1 Overview of GXD

GXD consists of three things: (a) a data model with associated APIs, (b) data
transport language (a dialect of XML) and (¢) a library implementing the data
model APIs. The data model is designed to be a common framework capable of
representing a wide range of things including scientific data (or typed references
to scientific data) and its metadata, associations between data items, infras-
tructure resources (such as users, machines and networks) and GXD metamodel
items. While GXD was created in the context of scientific data management, it
has wide applicability.

*MRJ Technology Solutions, NASA Ames Research Center; email: pv@nas.nasa.gov or
pvanderbilt@iname.com



GXD’s data model defines the logical notion of (GXD) nodes. There are four
kinds of nodes: Value, List, Dictionary and Object. Value nodes contain data
in the form of strings, integers, floats or booleans. The other nodes contain
references to other nodes. A List node contains references to an ordered collec-
tion of other GXD nodes. A Dictionary (or Dict) node contains references to
a (homogeneous) collection of other GXD nodes indexed by a key. An Object
node contains references to a heterogeneous and extensible collection of other
GXD nodes indexed by what we call property names. Thus nodes logically form
a directed graph.

Groups of nodes, called nodesets, can work together to represent real-world
things and nodesets can (recursively) aggregate into higher-level constructs. The
total set of nodes (at any particular time) we call the data space.

The data model has an associated client API (in Java) which models nodes.
Through the API, one can extract the content of a Value node or follow the
references from List, Dict and Object nodes to other nodes. The GXD client
runtime implements this API.

Some people call XML a “metalanguage” because it defines a set of lan-
guages, each specified by a DTD. In the same way, GXD is a metalanguage
through the notion of interfaces. An interface defines a subset of the universe of
GXD nodes and nodesets and assigns meaning to the elements of that subset.
Interfaces are represented within GXD by interface definitions and have associ-
ated, globally-unique interface identifiers. All nodes contain information about
their interface(s).

GXD'’s data transport language is used to communicate some region of the
data space from data source to client. It uses a dialect of XML that encodes ev-
erything using a small set of tags that represent only the course structure of the
data space. These tags are VALUE, LIST, DICT and OBJECT and correspond
to the kinds of nodes describe previously. A VALUE element contains text
(PCDATA) and is used to represent Values nodes. A LIST element contains an
ordered collection of other GXD elements. A DICT element contains a collec-
tion of other GXD elements whose “id” attribute indicates the associated key.
An OBJECT element contains references to a collection of other GXD elements
whose “id” attribute is the property name. All elements have an “interfaceld”
attribute to indicate the associated node’s interface.

Consider the fragment of GXD XML given in figure 1. This fragment of

<O0BJECT interfaceld="org.myOrg.Person">

<VALUE id="commonName">John</VALUE>

<VALUE id="surName'">Doe</VALUE>

<VALUE id="telephoneNumber">(555) 555-1234</VALUE>
</0BJECT>

Figure 1: Example of a Person instance in GXD

GXD represents an Object node of interface “org.myOrg.Person” which contains



references to three Value nodes (which happen to be encoded in line). The
element has the “OBJECT” tag indicating the kind of node. The “interfaceld”
attribute indicates that node implements the “org.myQOrg.Person” interface. Its
contents are three other elements, each directly encoding one of the referenced
nodes and whose “id” attribute denotes the element’s property name. Each of
these elements encodes a Value node.

GXD employs a few additional tags, LINK and SCRIPT, that indicate that
the data is encoded by rule rather than being directly present. GXD also has an
attribute for specifying a “template”, an entity containing defaults. And finally,
GXD has a few standard attributes that support “introspection”, the ability to
find out about the type and implementation of a data item.

The GXD client runtime interprets GXD documents and yields (Java) ob-
jects representing the data. A client application (one using the client APIs) sees
the data space as a globally interconnected set of nodes — the runtime provides
transparency over location and data source implementation by dealing with the
indirections (LINK and SCRIPT) and by handling template references. More
will be said about indirections in section 6. For more on GXD in general, see
its white paper [10].

2 Direct XML

The data of figure 1 could also be represented in XML along the lines of figure 2.
In this case the “Person” tag indicates the type of the entity being represented

<Person>
<commonName>John</commonName>
<surName>Doe</surName>
<telephoneNumber>(555) 555-1234</telephoneNumber>
</Person>

Figure 2: Example of a Person instance in “direct” XML

and the other tags (“commonName”, “surName” and “telephoneNumber”) in-
dicate properties of that entity.

This style of XML we call direct XML. In this style, the tag of an element
indicates the element’s type and possibly the role of the element within its
parent. Note that, in contrast, GXD carries type indication in one attribute
(“interfaceld”) and role information in another (“id”); a GXD tag does imply
some type information, but only at a very high level.

3 Inheritance and Polymorphism

So now consider what happens if one wants to define an extension of Person, say
OrganizationalPerson, which has additional properties like “organizationalUnit”



and “location”. In GXD, an instance of OrganizationalPerson could be given
as in figure 3. Note that the “interfaceld” attribute contains two interface

<0BJECT interfaceld="org.myOrg.Person,org.my0rg.0rganizationalPerson">
<VALUE id="commonName">John</VALUE>
<VALUE id="surName">Doe</VALUE>
<VALUE id="telephoneNumber">(555) 555-1234</VALUE>
<VALUE id="organizationalUnit">My Organization</VALUE>
<VALUE id="location">Some Building/Room</VALUE>
</0BJECT>

Figure 3: Example of an OrganizationalPerson instance in GXD

identifiers, one for each interface implemented. And note that the additional
properties are simply included with the OBJECT.

A client that understands data of the “Person” interface, but not of “Or-
ganizationalPerson”, can interpret this data by simply ignoring the additional
properties. However a client that understands the “OrganizationalPerson” inter-
face can interpret this same data and take advantage of the full set of properties.
This feature, the ability to have one data item represent data at several levels of
abstraction simultaneously, we call polymorphism and is one of the key design
goals of GXD. In particular, an interface definition (for an Object) imposes con-
straints on some set of properties while saying nothing about properties outside
that set.

To do the same thing in direct XML, one would first need to decide on
the tag for the element. If the tag is “OrganizationalPerson”, then a client
understanding only the “Person” element type will not recognize the element.
But if the tag is “Person”, then including the additional elements violates the
corresponding element type. Even if the additional elements are allowed (by
giving up on “valid” XML), a client understanding OrganizationalPerson does
not have a concrete way to know that this data item does in fact implement
that extended element type.

Essentially an XML document is of a single type as specified by its DTD
and each element within the document is of a single type as specified by its
tag. While XML namespaces [2] allow an element type to be specified once and
used in many DTDs, it is still the case that each element has a single type. In
contrast, type indication in GXD is via a multi-valued attribute, so a node can
be of several types.

Some proposed XML schema languages allow for inheritance. In particular,
SOX (Schema for Object-Oriented XML) [6] allows one to define, for instance,
an element type for OrganizationalPerson by inheriting from the element type
for Person. But this results in two different element types and any given ele-
ment must be of one of those two types, not both. This doesn’t provide the
polymorphism that GXD provides.

One way to represent the data of figure 3 using direct XML is to have
two documents, one using the “Person” element type and one using “Organi-



zationalPerson”, and to arrange to serve them to clients based on the client’s
capabilities. One problem with this scheme is that a single real-world entity,
like some actual person, is represented by more than one document and, so,
is identified by more than one URL. This makes it hard, for instance, to put
a single URL in the person’s directory entry or in their email signature block.
In general, each real-world entity would have to have multiple URLs and there
would need to be enough metainformation to know which one to use when.

4 Multiple Inheritance

A similar problem arises with multiple inheritance. For example, GXD might
have a standard interface, say gxd.core.Datalnfo, that contains properties for
things like update time, owner and access rights. An instance might be as in
figure 4. Note that the last two elements of the OBJECT have “id” attributes

<0BJECT interfaceld="org.myOrg.Person,org.my0rg.0rganizationalPerson,
gxd.core.DataInfo">
<VALUE id="commonName">John</VALUE>
<VALUE id="surName">Doe</VALUE>
<VALUE id="telephoneNumber">(555) 555-1234</VALUE>
<VALUE id="organizationalUnit">My Organization</VALUE>
<VALUE id="location">Some Building/Room</VALUE>
<VALUE id="gxd.core.DataInfo:owner">Some-URL</VALUE>
<VALUE id="gxd.core.DataInfo:updateTime">
01 Jan 2000 12:00:00 PST
</VALUE>
</0BJECT>

Figure 4: Example of multiple inheritance in GXD

that use a compound name consisting of an interface id and property name
separated by a colon. While not required for this example, these compound
names illustrate that a property name can be kept unambiguous by having an
appropriate interface id prefix. In general, compound names allow an OBJECT
node to implement an arbitrary set of interfaces.

Since XML requires each element to have a unique type, it seems that to
do the same thing in direct XML, one would need element types for “Per-
son”, “PersonWithDatalnfo”, “OrganizationalPerson” and “OrganizationalPer-
sonWithDatalnfo”. As the number of potential mix-in interfaces increases, the
number of element types needed to represent all combinations would increase
exponentially.



5 Schema Evolution

An important consideration for any data model is that of schema evolution:
what happens when one needs to change the type or structure of data?

GXD facilitates schema evolution in three ways. First, because of the general
rule that a client ignores properties it doesn’t understand, an interface designer
can always add new optional properties to an interface (subject to rules not
described here and without changing its revision level as described shortly).
An optional property is one that might or might not be present in any given
instance. Note that “old” data (data published without knowledge of the new
properties) is still valid and usable by “new” clients (those understanding the
extended interface). Similarly, new data is usable by old clients (because they
ignore the new stuff).

As far as T can tell, XML assumes that DTDs and element types are constant
over location and time. It seems that a change to a DTD requires simultaneous
changes to all data sources and clients using that DTD. This is a hard thing to
accomplish in widely distributed, autonomous environments.

The second way GXD supports evolution is via what we call interface ver-
sioning: associated with every interface identifier is actually a family of inter-
faces indexed by numbers starting at 0. When one first defines an interface,
revision 0 is defined. Later one can create new revisions (numbered consecu-
tively) and add new properties or obsolete old ones (again subject to rules not
described here). Each revision is logically a separate interface and it is possible
for a node to implement a range of revisions. Thus a data source can choose
to implement a revised interface without dropping support for the old inter-
face (until some appropriate interval has elapsed). Each element announces the
range of interface revisions it supports and so a client can determine the max-
imum revision in common between it and the data source and operate on the
data at that level. So again new clients can use old data and old clients can use
new data (at least for a while).

I'm not aware of any facility like this directly supported by XML.

The third way GXD supports evolution is via multiple inheritance (as de-
scribed earlier). Let’s say a data publisher has published his data using some
given interface. He then discovers that other data publishers are publishing
similar data but using a different interface. He can than add support for that
interface to his data by using multiple inheritance. (And if his customers stop
using his data via the old interface, support for it can be dropped.)

As discussed earlier, XML doesn’t support multiple inheritance and, so, it
doesn’t support this form of evolution.

One of the consequences of GXD’s support for evolution is that it supports
organic, evolutionary growth of data sources and their standards. This is in
contrast to what we call “standardization by committee” where a bunch of
people get together and try to come up with a single, immutable standard
that they can all use. This is the model to use when one can only implement
one standard and when changing the standard breaks current implementations.
Because there’s only one standard and it’s pretty much immutable once defined,



everyone tries to get everything in it that they might possibly want and everyone
has to agree on every little detail. And all too often this is done without having
implemented and used real software based on the standard.

In contrast, GXD supports evolutionary standardization. GXD allows mul-
tiple interfaces (GXD’s kind of standard) to be in use simultaneously. GXD
interfaces will undergo “natural selection” in the sense that good ones will be
widely used while poor ones will be dropped over time. Furthermore, interfaces
can evolve via interface versioning and inheritance, even while in use. Since an
interface can be extended, it needs not have every conceivable property — it can
be defined with those properties known to be needed at first and others added
later. And if a property is defined incorrectly, an improved one can be defined
in a later revision. We believe that this sort of standardization process will
lead to much better interfaces over time, as compared to the standardization by
committee process.

6 Indirections

Section 1 mentioned that the GXD data language includes a handful of addi-
tional tags that are used to encode data by rule. One such tag is LINK. A
LINK element has a “ref” attribute that contains a URL (possibly relative to
the current document). The GXD runtime, upon encountering a LINK element,
obtains the document named by the URL and returns the contained GXD node
in place of the LINK element. Since LINK can contain arbitrary URLs, access-
ing a URL may involve program execution at the data source. Also, the URL
can contain a fragment identifier that is used to refer within the named GXD
entity.

The LINK mechanism has many uses. For one, it allows one to break a big
result into a number of smaller pieces which are obtained on demand transpar-
ently by the runtime. Thus a data source could potentially serve up an entire
database as one logical entity by yielding a top-level GXD node with LINKs for
further data.

LINKs also allow for a kind of referral where a result can indicate that all
or part of the result is found at some other server. This allows data to be
distributed across several servers and it allows data to migrate transparently to
the client.

LINKs also facilitate the sharing of data because many documents can have
LINKSs to the same node. This can save space because the same data need not
be replicated in every document. But perhaps more importantly, it allows for a
single point of presence for each instance — one can extend the data by adding
properties and interfaces in just one place and all documents linking to that
node get the changes.

When encoding directly in XML, one can reference another document using
URLs [1], XML pointers (XPointer [7] which is built on XPath [5]), XML links
(XLink [8]) or other mechanisms. But any of these indirections must be handled
by the client. By having the GXD runtime handle indirections instead, the client



is simplified. Another advantage is that the placement of LINKSs can change over
time without requiring changes in the corresponding clients.

GXD also has application-visible links via the “Association” interfaces. These
standard interfaces, which are similar in functionality to that of XLink [8], rep-
resent associations, references and relationships. They allow applications to
employ hyperlinks or other rendering mechanisms.

Another kind of indirection planned for GXD is the SCRIPT element, which
allows (JavaScript) program text to be included in a GXD file. The client
runtime replaces each SCRIPT element with the GXD node subtree generated
by running that script.

It is also planned for GXD to have the notion of templates. A template is a
GXD nodeset that contains default information for a set of nodes, including the
templates for its children. A node that refers to a template has that template’s
default properties logically interpolated into it, except for properties already
present in the node. This allows a data source to factor out information common
to a collection of nodes, thus saving space and transmissions costs. Perhaps more
importantly, it should alleviate the pressure to skimp on per-node information
thus allowing each major node data item to be complete and self contained.

We believe that the combination of links, scripts and templates will allow
encoding techniques far beyond what one would get using direct XML encod-
ing. For instance, we expect that some classes of multiple inheritance can be
implemented entirely using templates with links and scripts — the actual, pre-
template data need not change at all. In general, the features of GXD allow for
a wide range of data source implementations and allow data sources to evolve
without affecting existing clients.

7 GXD and XML Interoperability

Although GXD and direct XML have the differences mentioned in the last few
sections, we expect them to be interoperable. We have prototyped XSLT [4]
translators from XML to GXD. We suspect it’s possible to employ GXD SCRIPT
elements with (DTD-specific) programs that convert XML to GXD nodes on the
fly, thus allowing XML documents to be “injected” into the GXD data space.

Going from GXD to XML is slightly harder because standard tools like
XSLT may have difficulty with GXD’s indirections (links, scripts and templates)
— they don’t have GXD’s runtime built in. Also, because of the difference in
models, one GXD entity may map to several XML documents (one per interface
implemented). However, technology like JSP (Java Server Pages [9]) should be
able to operate over the the GXD runtime, thus leveraging the full power of
GXD.



8 Summary

GXD is defined over XML but uses XML in a non-standard way. In “direct”
XML, tags are used to indicate type or identity. In GXD, only a handful of
GXD-defined tags are used and they define the rough structure of the data. In-
dications of type and identity are carried in attributes. GXD allows an element
to have multiple types, thus supporting polymorphism, multiple inheritance
and interface versioning. These features in turn facilitate evolutionary stan-
dardization, which should help a community to converge on the best standards.
In contrast, direct XML restricts an element to have only a single type and,
so, makes it difficult to support polymorphism, multiple inheritance, interface
versioning and evolutionary standardization.

The GXD data format also allows for links, scripts and templates. The
GXD runtime interprets these things and yields logical nodes, instances of a
standard API, that are independent of location, distribution and data source
implementation. In contrast, direct XML has no such facilities and, so, any
similar functionality is relegated to the application itself.

References

[1] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource Loca-
tors (URL), RFC 1738. Network Working Group of the IETF, Dec 1994.
http:/ /info.internet.isi.edu/in-notes/rfc/files/rfc1736.txt.

[2] T. Bray, D. Hollander, and A. Layman. Namespaces in XML. World
Wide Web Consortium (W3C), rec-xml-names-19990114 edition, Jan 1999.
http://www.w3.org/TR/1999/REC-xml-names-19990114/.

[3] T. Bray, J. Paoli, and C. M. Sperberg-McQueen. Eztensible Markup Lan-
guage (XML) 1.0. World Wide Web Consortium (W3C), rec-xml-19980210
edition, Feb 1998. http://www.w3.org/TR/REC-xml.

[4] J. Clark. XSL Transformations (XSLT), Version 1.0. World
Wide Web Consortium (W3C), rec-xslt-19991116 edition, Nov 1999.
http://www.w3.org/TR/xslt.

[5] J. Clark and S. DeRose. =~ XML Path Language (XPath). World
Wide Web Consortium (W3C), rec-xpath-19991116 edition, Nov 1999.
http://www.w3.org/ TR /xpath.

[6] A. Davidson, M. Fuchs, M. Hedin, M. Jain, J. Koistinen, C. Lloyd,
M. Maloney, and K. Schwarzhof. Schema for Object-Oriented XML 2.0.
World Wide Web Consortium (W3C), note-sox-19990730 edition, July
1999. http://www.w3.org/ TR/NOTE-SOX/.

[7] S. DeRose, R. Daniel, and E. Maler. XML Pointer Language (XPointer).
World Wide Web Consortium (W3C), wd-xptr-19991206 edition, Dec 1999.
http://www.w3.org/ TR /xptr.



[8] S. DeRose, E. Maler, D. Orchard, and B. Trafford. XML Linking Language
(XLink). World Wide Web Consortium (W3C), wd-xlink-20000221 edition,
Feb 2000. http://www.w3.org/ TR /xlink/.

[9] Sun Microsystems, Inc. JavaServer Pages — Dynamically Generated Web
Content. http://www.java.sun.com/products/jsp/.

[10] P. Vanderbilt. Uniform Data Access Using GXD. Numerical
Aerospace Simulation Systems (NAS) Division of NASA, Sept 1999.
http://www.nas.nasa.gov/~pv/gxd/.

10



